Large Animal Models for Foamy Virus Vector Gene Therapy
نویسندگان
چکیده
Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.
منابع مشابه
Prospects for Foamy Viral Vector Anti-HIV Gene Therapy
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have sever...
متن کاملFeline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potent...
متن کاملPreclinical evaluation of Cal-1 in macaques
INTRODUCTION HIV+ patients whose viremia is stably suppressed by combination antiretroviral therapy (cART) nevertheless exhibit increased morbidity and mortality relative to healthy controls, e.g., due to HIVdependent, ongoing immune activation.1,2 Recently, a number of strategies have emerged that seek to advance beyond the era of cART-dependent viral suppression, to achieve drug-free virus re...
متن کاملPackaging cell lines for simian foamy virus type 1 vectors.
Foamy viruses are nonpathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. We have previously demonstrated the utility of simian foamy virus type 1 (SFV-1) as a vector system by transient expression assay (M. Wu et al., J. Virol. 72:3451-3454, 1998). In this report, we describe the first stable packaging cell lines for fo...
متن کاملA comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammare...
متن کامل